19 research outputs found

    Analysing Scientific Collaborations of New Zealand Institutions using Scopus Bibliometric Data

    Full text link
    Scientific collaborations are among the main enablers of development in small national science systems. Although analysing scientific collaborations is a well-established subject in scientometrics, evaluations of scientific collaborations within a country remain speculative with studies based on a limited number of fields or using data too inadequate to be representative of collaborations at a national level. This study represents a unique view on the collaborative aspect of scientific activities in New Zealand. We perform a quantitative study based on all Scopus publications in all subjects for more than 1500 New Zealand institutions over a period of 6 years to generate an extensive mapping of scientific collaboration at a national level. The comparative results reveal the level of collaboration between New Zealand institutions and business enterprises, government institutions, higher education providers, and private not for profit organisations in 2010-2015. Constructing a collaboration network of institutions, we observe a power-law distribution indicating that a small number of New Zealand institutions account for a large proportion of national collaborations. Network centrality concepts are deployed to identify the most central institutions of the country in terms of collaboration. We also provide comparative results on 15 universities and Crown research institutes based on 27 subject classifications.Comment: 10 pages, 15 figures, accepted author copy with link to research data, Analysing Scientific Collaborations of New Zealand Institutions using Scopus Bibliometric Data. In Proceedings of ACSW 2018: Australasian Computer Science Week 2018, January 29-February 2, 2018, Brisbane, QLD, Australi

    The Bayan Algorithm: Detecting Communities in Networks Through Exact and Approximate Optimization of Modularity

    Full text link
    Community detection is a classic problem in network science with extensive applications in various fields. Among numerous approaches, the most common method is modularity maximization. Despite their design philosophy and wide adoption, heuristic modularity maximization algorithms rarely return an optimal partition or anything similar. We propose a specialized algorithm, Bayan, which returns partitions with a guarantee of either optimality or proximity to an optimal partition. At the core of the Bayan algorithm is a branch-and-cut scheme that solves an integer programming formulation of the problem to optimality or approximate it within a factor. We demonstrate Bayan's distinctive accuracy and stability over 21 other algorithms in retrieving ground-truth communities in synthetic benchmarks and node labels in real networks. Bayan is several times faster than open-source and commercial solvers for modularity maximization making it capable of finding optimal partitions for instances that cannot be optimized by any other existing method. Overall, our assessments point to Bayan as a suitable choice for exact maximization of modularity in networks with up to 3000 edges (in their largest connected component) and approximating maximum modularity in larger networks on ordinary computers.Comment: 6 pages, 2 figures, 1 tabl
    corecore